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1. Introduction

Currently in silico prediction of pharmacokinetic and phar-
macodynamic properties, including absorption, distribution,
metabolism, excretion and toxicity (ADMET), in the early stage of
drug discovery has been thought to be an efficient way to help to
reduce the cost of drug development [1,2]. Up to now, many pre-
diction models of ADMET properties have been established [3,4],
but some of these models are still not competent for the prediction
purpose [5], such as, typically, oral bioavailability (BIO) [6–8] and
human plasma protein binding rate (PPBR) [8].

Oral bioavailability is defined as (taking the FDA’s definition)
“the rate and extent to which the active ingredient or active moi-
ety is absorbed from a drug product and becomes available at the
site of action” [9]. The oral bioavailability can affect the dose regi-
men and determines how much a drug should be given a time [1].
When the drug enters the blood circulation, some of it will bind in
plasma to constituent proteins, such as albumin (primarily acidic
drugs), �1-Acid glycoprotein (basic drugs), and lipoproteins (neu-
tral and basic drugs) [10]. The human plasma protein binding rate
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is thus expressed as the percentage of a drug bound to plasma pro-
teins. The BIO and PPBR are generally thought to be affected by
many factors. For example, for a drug to be orally bioavailable, it

must get to the general circulation by not only passing through
the intestine, but also through the liver where it is subject to first-
pass metabolism (hepatic clearance) [11]. This implies that many
factors, such as its solubility, lipophilicity, gastrointestinal transit
and first-pass metabolism may have important impacts on the oral
bioavailability for a drug when orally administrated [1,12]. This is
probably one of the main reasons why they are difficult to be pre-
dicted. On the other hand, most of the prediction models developed
so far are based on the quantitative structure–activity relationship
(QSAR) and quantitative structure–property relationship (QSPR)
[7,13–16]. However, there is an inherent deficiency for the QSAR
and QSPR, namely, the limitation of the diverse range of chemical
structures [17,18], which may be another reason why the BIO and
PPBR are difficult to be predicted. An alternative way to overcome
this problem is the use of nonlinear supervised learning method,
such as support vector machine (SVM) [8,12,19], which can cover
more diverse range of structures than those described by the QSAR
and QSPR models.

Although several previous studies have shown that the SVM
is capable to correctly predict ADMET-related properties [4,12],
there still exist two problems for the SVM, namely feature selec-
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tion and SVM parameter optimization. The two problems have been
shown to be crucial to the prediction efficiency and accuracy of SVM
classification [20–22]. In particular, the feature subset selection
and optimal SVM parameters setting influence each other, which
indicates that they should be dealt with simultaneously [23,24].
Thus, in this investigation, an integrated scheme, in which the fea-
ture selection and SVM parameter optimization are considered at
the same time, will be used to overcome this type of problem. In
this integrated scheme, genetic algorithm (GA) is used for the fea-
ture selection and conjugate gradient (CG) method is used for the
parameter optimization.

Taking together, in this study, support vector machine method
combined with genetic algorithm for feature selection and conju-
gate gradient method for parameter optimization (GA–CG–SVM),
will be used to develop prediction models of PPBR and BIO. The
generated SVM prediction models will be validated by 5-fold cross-
validation and independent test set method. We organize this
paper as follows: The second part presents a detailed description
of the proposed integrated GA–CG–SVM scheme. In the third part,
we shall apply the integrated GA–CG–SVM method to build SVM
prediction models of PPBR and BIO. Validations of the generated
models will also be included in this part. Conclusions are offered in
the final part.

2. Materials and methods

2.1. Support vector machine

The SVM theory has been extensively described in many litera-
tures [25,26]. Here we just make a short summary to the basic idea
of SVM.

In SVM, each object is described by a vector xi of N real num-
bers (features or descriptors), which corresponds to a point in an
N-dimensional space. The objects in the first class (positive) are
each assigned a value of yi = +1, the other ones in the second class
(negative) are yi = −1. In linearly separable cases, the objects can be
correctly classified by

w · xi + b ≥ +1, for yi = +1 (positive) (1)

w · xi + b ≤ −1, for yi = −1 (negative) (2)

where w is a vector normal to the hyperplane, b is a scalar quantity.
With the w and b being solved, a classifying determination function
is obtained as follows:
f (x) = sign[(w · xi) + b] (3)

For a linear non-separable case, no hyperplane can be used to
perfectly separate two sets. In this case, we can introduce a non-
negative slack variable �i ≥ 0, i = 1, . . ., m. Such that

w · xi + b ≥ +1 − �i, for yi = +1 (4)

w · xi + b ≤ −1 + �i, for yi = −1 (5)

The purpose here is to find a hyperplane that provides the minimum
number of training errors. The equation to be solved becomes:

Max
w,b

2
||w|| + C

m∑

i=1

�i Subject to yi(w · xi + b) − 1 + �i ≥ 0 (6)

where C is the penalty parameter, which should be predetermined
by user. The parameter C has important impact on the accuracy of
the SVM classifier, thus it should be chosen carefully. Similar to the
linearly separable cases, Eq. (6) can also be solved by Lagrangian
multipliers method.

The nonlinear (non-)separable cases could be easily transferred
to linear cases through projecting the input features into a new
Biomedical Analysis 47 (2008) 677–682

high-dimensional feature space by using a kernel function K(xi, xj).
Several types of kernel functions can be used. Due to that the radial
basis function (RBF) (see Eq. (7)) performs quite well in many cases,
RBF will also be used in this study.

k(xi, xj) = exp(−� ||xi − xj||2) (7)

where � is a parameter which should be specified by user in
advance.

Obviously, to solve a realistic problem using SVM, not only the
penalty parameter C, but also the kernel parameter (such as � in the
case of RBF) should be optimized to obtain a better classification
model [20,27].

2.2. Parameter optimization by using conjugate gradient method

As stated above, two parameters, namely the penalty parameter
C and kernel parameter � , should be predetermined and opti-
mized to obtain a good model. Traditionally, the method used
for optimization of (C, �) is Grid-search algorithm [28], which is
time-consuming. Thus in this investigation, we shall use conjugate
gradient method to optimize the (C, �).

As it has been known, different pairs of (C, �) give different
accuracy. This can be expressed as a function:

A = f (C, �) (8)

where A is the accuracy of the SVM. Optimizing C and � means
finding an optimal pair of (C, �) to maximize A. The accuracy of
n-fold cross-validation is used to represent the accuracy of SVM
since it has been shown that n-fold cross-validation can prevent
the overfitting problem [28]. Here 5-fold cross-validation is used
due to that 5-fold cross-validation generally performs quite well
for middle size problems like those studied here [28,29].

Eq. (8) can be easily transferred to Eq. (9).

A′ = −f (C ′, � ′) (9)

where C′ is the logarithm of C, � ′ is the logarithm of � , A′ is minus
accuracy. Now the problem becomes that finding an optimal (C′,
� ′) to minimize A′, which can be easily solved by using standard
conjugate gradient method.
Genetic algorithm is a very popular optimization algorithm,
which is based on a direct analogy to Darwinian evolutionary ideas
of natural selection and genetics in biological systems [23]. GA has
been successfully applied to a range of diverse problems such as
data mining and optimization. Recently it has also been used for
the feature selection in SVM modeling [20,30].

In our implementation of GA, a binary string with each bit repre-
senting a feature (0: not selected, 1: selected) was used to represent
a chromosome. The GA is then applied to a population of randomly
generated binary strings. The fitness of each string is determined
as follows:

fitness = WA × SVM accuracy + WF × NF (11)

where WA is the SVM classification accuracy weight, NF is the num-
ber of feature selected, WF is the weight of feature number. The
accuracy of 5-fold cross validation was used as SVM accuracy. WA
and WF can be adjusted based on their relative importance.

Roulette wheel selection algorithm was used to choose the
chromosomes for crossover to produce offspring. The swapping
positions were randomly created and the crossover rate can be
adjusted. The mutation was allowed and its rate can be adjusted.
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2.4. Experimental data sets for BIO and PPBR

Experimental data sets used in this study were collected from
literature. Each compound in these data sets has been carefully
checked in order to eliminate the duplication, for example, the same
compound but different names are assigned. The compounds were
then classified into two categories, positive (+) and negative (−),
according to their relative values measured by experiment.

For the human oral bioavailability, a total of 766 compounds
were collected [6]. Six hundred and ninety compounds were used
to train and test the prediction model and the remaining 76
compounds compose an independent validation set for further
assessing the prediction model. These drugs were categorized into
two classes: “positive” if its bioavailability ≥ 20%, otherwise “neg-
ative”. A set of 853 compounds with their human plasma protein

binding rate measured experimentally were taken from literature
[15]. These compounds were also divided into training set (692
compounds) and the independent validation set (161 compounds).
The actual class of each compound was identified based on its
relative value of plasma protein binding rate: positive assigned
if its plasma protein binding rate ≥ 75%, otherwise negative
assigned.

2.5. Modeling details

All the structures of the compounds were generated and then
optimized by using Cerius2 program package [31]. The 3D struc-
ture of each compound was manually inspected to ensure that each
molecule was properly represented.

Initially, 951 molecular descriptors were chosen. These descrip-
tors cover 13 different categories (Table 1), including constitutional
(48), topological (119), randic molecular profiles (41), geomet-
rical (74), RDF (150), atom-centred fragments (120), walk and
path counts (47), connectivity indices (33), edge adjacency indices
(107), eigenvalue based indices (44), functional group counts (154),
molecular properties (11), ET-state properties (3).

Table 2
Descriptors selected by the automatic feature selection process in the SVM modeling for

Name Description

Mv Mean atomic van der Waals volume (scaled on
MS Mean electrotopological state
nAT Number of atoms
nS Number of sulfur atoms
ARR Aromatic ratio
PJI2 2D Petitjean shape index
PW2 Path/walk 2-Randic shape index
ZM2v Second Zagreb index by valence vertex degrees
SRW05 Self-returning walk count of order 05
X4Av Average valence connectivity index chi-4
J3D 3D-Balaban index
RDF020m Radial distribution function − 2.0/weighted by a
RDF035m Radial distribution function − 3.5/weighted by a
RDF075m Radial distribution function − 7.5/weighted by a
C-001 CH3R/CH4

C-003 CHR3

C-011 CR3X
C-017 CR2

H-047 H attached to C1(sp3)/C0(sp2)
H-048 H attached to C2(sp3)/C1(sp2)/C0(sp)
H-049 H attached to C3(sp3)/C2(sp2)/C3(sp2)/C3(sp)
H-052 H attached to C0(sp3) with 1X attached to next
S-107 R2S/RS-SR
EEig03x Eigenvalue 03 from edge adj. matrix weighted b
ESpm01d Spectral moment 01 from edge adj. matrix weig
ALOGP2 Squared Ghose–Crippen octanol–water partitio
TPSA(Tot) Topological polar surface area using N, O, S, P po
nCconj Number of non-aromatic conjugated C(sp2)
nRCONHR Number of secondary amides (aliphatic)
Biomedical Analysis 47 (2008) 677–682 679

Table 1
The categories of molecular descriptors initially used in this work

Category of descriptor Number

Constitutional descriptors 48
Topological descriptors 119
Randic molecular profiles 41
Geometrical descriptors 74
RDF descriptors 150
Atom-centred fragments 120
Walk and path counts 47
Connectivity indices 33
Edge adjacency indices 107
Eigenvalue based indices 44
Functional group counts 154
Molecular properties 11
ET-state properties 3
Firstly the initial feature subset was preprocessed which pur-
pose is to eliminate the obvious “bad” descriptors and reduce the
redundancy and overlapping of the descriptors. In this account, the
following descriptors are removed: (1) descriptors with too many
zero values, (2) descriptors with very small standard deviation val-
ues (<0.5%), and (3) descriptors which are highly correlated with
others (correlation coefficients >90%). After the preprocessing, the
descriptor values were scaled to a range of −1 to +1, which is nec-
essary since the different ranges of descriptor values will influence
the quality of the SVM modeling.

The termination criteria for the running of genetic algorithm
are that the generation number reaches generation 200 or that the
fitness value does not improve during the last 10 generations. The
crossover rate was set to 0.8 and mutation rate 0.05.

Performance of the SVM classification model can be assessed
by the quantity of true positives (TP, true PPBR+/BIO+ agents), true
negatives (TN, true PPBR−/BIO− agents), false positives (FP, false
PPBR+/BIO+ agents), false negatives (FN, false PPBR−/BIO− agents).
Sensitivity SE = TP/(TP + FN) and specificity SP = TN/(TN + FP) are
the prediction accuracies for the PPBR+/BIO+ and PPBR−/BIO−,

human plasma protein binding rate

Class

carbon atom) Constitutional descriptors
Constitutional descriptors
Constitutional descriptors
Constitutional descriptors
Constitutional descriptors
Topological descriptors
Topological descriptors
Topological descriptors
Walk and path counts
Connectivity indices
Geometrical descriptors

tomic masses RDF descriptors
tomic masses RDF descriptors
tomic masses RDF descriptors

Atom-centred fragments
Atom-centred fragments
Atom-centred fragments
Atom-centred fragments
Atom-centred fragments
Atom-centred fragments
Atom-centred fragments

C Atom-centred fragments
Atom-centred fragments

y edge degrees Edge adjacency indices
hted by dipole moments Edge adjacency indices
n coefficient (log P2) Molecular properties
lar contributions Molecular properties

Functional group counts
Functional group counts
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for negative is just 25%, which indicates that the negative could not
Table 3
Prediction accuracies of the SVM models of PPBR and BIO by using 5-fold cross-
validation

Activity Cross-validation Positive Negative Q (%)

TP FN SE (%) TN FP SP (%)

PPBR 1 68 8 89 52 10 84 87
2 65 11 86 54 8 87 86
3 67 9 88 48 14 77 83
4 67 9 88 52 10 84 86
5 67 10 87 58 5 92 89

Average 88 85 86

BIO 1 101 2 98 7 27 21 79
2 103 0 100 5 30 14 78
3 99 4 96 10 25 29 79
4 103 0 100 10 25 29 82
5 103 1 99 11 24 31 82

Average 99 25 80

respectively. The overall accuracy (Q) is calculated by the equation:
Q = (TP + TN)/(TP + TN + FP + FN).

All the calculations were carried out by the in-house
GA–CG–SVM program, which calls the gcc package of libsvm (ver-
sion 2.83) for the SVM calculation [32]. Molecular descriptors were
generated using the online program PCLIENT [33].

3. Results and discussion

3.1. Prediction model for human plasma protein binding rate
The training set containing 692 compounds was used to train the
SVM prediction model of PPBR. The number of descriptors initially
chosen is 951. Passing through feature preprocessing and auto-
matic feature selection processes, the number of descriptors finally
selected for building the SVM model is 29. Table 2 lists the selected
descriptors and their descriptions. These molecular descriptors fall
into several categories as follows: constitutional descriptors (5),
topological descriptors (3), Walk and path counts (1), connectiv-
ity indices (1), geometrical descriptors (1), RDF descriptors (3),
atom-centred fragments (9), edge adjacency indices (2), molecular
properties (2), functional group counts (2). Obviously the descrip-
tors represent different types of molecular properties, which at
least to some extent reflect that the PPBR of a drug is affected by
many complicated factors.

The SVM prediction model generated was tested by 5-fold cross-
validation method. The prediction accuracies for the training set
by using 5-fold cross-validation are shown in Table 3. The average
prediction accuracies for the positive (SE) and negative (SP) are 88%
and 85%, respectively. The average overall prediction accuracy is
86%.

Table 4
Prediction accuracies of different models of PPBR by independent validation set or test se

Method Data set No. of descriptors Q (%)

GA–CG–SVM Validation (161) 29 81
GA–SVM Validation (161) 104 66
Lin. SVM [8] Test (241) 16 72
Quad. SVM [8] Test (241) 16 72
RBF SVM [8] Test (241) 16 71
ANN [8] Test (241) 16 72
RBF [8] Test (241) 16 74
C5.0 [8] Test (241) 16 71
Neighbours [8] Test (241) 16 69
Biomedical Analysis 47 (2008) 677–682

The purpose of the SVM model generated is not just to classify
the training set agents correctly into PPBR+ and PPBR−, but also
to verify whether the SVM model is capable of classifying external
agents of the validation set series accurately as PPBR+ or PPBR−.
Thus an independent validation set comprising 161 compounds was
further used to evaluate the model just built. For the independent
validation set, the prediction accuracies for positive, negative and
overall are 72%, 89% and 81% (Table 4).

Trotter and Holden [8] developed several prediction models
for PPBR by using different supervised machine learning methods,
including SVM, ANN, C5.0, and neighbours. The training set they
used just contains 240 compounds, which is much smaller than
that we used. The overall prediction accuracies are between 69%
and 74% (see Table 4). Apparently our GA–CG–SVM model for PPBR
is superior over those developed by other methods.

3.2. Prediction model for oral bioavailability

Six hundred and ninety compounds composing the training set
were used to train and test the SVM prediction model of BIO. Again
the number of initial descriptors was 951. And it was reduced to
25 after preprocessing and automatic feature selection processes.
Table 5 presents the descriptors as well as their definitions. Similar
to PPBR, the descriptors include different types of molecular prop-
erties. Again, this implies that oral bioavailability of a drug might
be affected by many factors.

The prediction accuracies for the training set by using 5-fold
cross-validation are shown in Table 3. Apparently acceptable overall
prediction accuracy (average: 80%) is obtained. The average predic-
tion accuracy for the positive reaches 99%. But the average accuracy
be identified correctly. This is nothing to be surprised since very few
of prediction accuracies for the negative are bigger than 50% among
all of the classification models reported so far (also see the next
paragraph). Further, the independent validation set composed of
76 compounds was used to evaluate the performance of the model
just created. The overall prediction accuracy for the independent
validation set is 86% with an accuracy of 97% for positive and 44%
for negative (Table 6).

Trotter and Holden [8] built several prediction models by using
different SVM methods, ANN, RBF, C5.0 and neighbours, in which
the training set they used contains 240 compounds and test set 241
compounds. The highest overall prediction accuracy is 87% (Table 6)
which model was derived by RBF SVM, another implementation of
SVM. Notably, the prediction accuracies for the positive are around
90%, but those for the negative are less than 50% (Table 6), which are
very similar with our results. Wang et al. [12] used a smaller train-
ing set (133 compounds) and test set (34 compounds) to build two
prediction models by using the linear discriminant analysis (LDA)
and grid-search based support vector machine (GS-SVM). The GS-
SVM gives the highest overall prediction accuracy (86% for training

t

Positive Negative

TP FN SE (%) TN FP SP (%)

53 21 72 77 10 89
67 7 91 39 48 45

73 69
87 57
85 48
78 61
84 54
84 45
78 53
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Table 5
Descriptors selected by the automatic feature selection process in the SVM modeling for BIO

Name Description Class

MW Molecular weight Constitutional descriptors
Ms Mean electrotopological state Constitutional descriptors
nR05 Number of 5-membered rings Constitutional descriptors
S2K 2-Path Kier alpha-modified shape index Topological descriptors
ZM1V First Zagreb index by valence vertex degrees Topological descriptors
BLI Kier benzene-likeliness index Topological descriptors
HNar Narumi harmonic topological index Topological descriptors
TI2 Second Mohar index TI2 Topological descriptors
D/Dr11 Distance/detour ring index of order 11 Topological descriptors
X1A Average connectivity index chi-1 Connectivity descriptors
X0Av Average valence connectivity index chi-0 Connectivity descriptors
X3v Valence connectivity index chi-3 Connectivity descriptors
MWC02 Molecular walk count of order 02 Walk and path counts
ASP Asphericity Geometrical descriptors
QYYm Qyy COMMA2 value/weighted by atomic masses Geometrical descriptors
DISPe d COMMA2 value/weighted by atomic Sanderson electronegativities Geometrical descriptors
RDF035m Radial distribution function − 3.5/weighted by atomic masses RDF descriptors
RDF040m Radial distribution function − 4.0/weighted by atomic masses RDF descriptors
C-005 CH3X Atom-centred fragments
H-048 H attached to C2(sp3)/C1(sp2)/C0(sp) Atom-centred fragments
H-052 H attached to C0(sp3) with 1X attached to next C Atom-centred fragments
O-060 Al O Ar/Ar O Ar/R O R/R O C X Atom-centred fragments
ESpm01d Spectral moment 01 from edge adj. matrix weighted by dipole moments Edge adjacency indices

ient
2)

st set

)

MLOGP Moriguchi octanol–water partition coeffic
nCconj Number of non-aromatic conjugated C(sp

Table 6
Prediction accuracies of different models of BIO by independent validation set or te

Method Data sets No. of descriptors Q (%

GA–CG–SVM Validation (76) 25 86
GA–SVM Validation (76) 11 79
Lin. SVM [8] Test (241) 68 79
Quad. SVM [8] Test (241) 68 83
RBF SVM [8] Test (241) 68 87
ANN [8] Test (241) 68 85
RBF [8] Test (241) 68 86
C5.0 [8] Test (241) 68 83
Neighbours [8] Test (241) 68 83
LDA [13] Test (34) 5 82
GS-SVM [13] Test (34) 5 85

set and 85% for test set). Compared with these previous models,

the training set we used is much larger (690 compounds), which is
the largest dataset for BIO so far as far as we know. The prediction
accuracies of our GA–CG–SVM model are not better but compara-
ble to those of the previous models. The fact that the prediction
accuracy of BIO is difficult to be improved further implies that the
bioavailability of a drug is typically affected by many complicated
factors.

3.3. Influence of the use of parameter optimization

As stated in Section 1, the feature subset selection and optimal
SVM parameters setting are two key factors to influence the effi-
ciency and accuracy of SVM classification model. In fact, the effect
of the feature selection on the SVM model has been widely dis-
cussed in literature [18,34,35]. But few of studies have analyzed
the possible impact of the SVM parameter optimization [20]. In the
follows, we shall use the same data sets as before to rebuild SVM
models in which just feature selection (by GA) was performed. The
purpose here is to demonstrate the possible influence of the use of
SVM parameter optimization.
Molecular properties
Functional group counts

Positive Negative

TP FN SE (%) TN FP SP (%)

58 2 97 7 9 44
58 2 97 2 14 20

85 46
89 39
95 36
92 43
95 27
90 39
90 36

The prediction accuracies of the rebuilt models by using

GA–SVM are shown in Tables 4 and 6 for PPBR and BIO, respec-
tively. For the PPBR, the overall accuracies are 68% (obtained by
5-fold cross-validation) and 66% for the training set and indepen-
dent validation set, respectively, which are lower by 18% and 15%
compared with the corresponding values of GA–CG–SVM models,
respectively. For the individual categories, the prediction accuracies
of GA–SVM models are also lower than those of GA–CG–SVM mod-
els (see Table 4). For the BIO, the prediction accuracies of GA–SVM
for the negative and the global are obviously lower than the corre-
sponding values of GA–CG–SVM model (see Table 6). These results
clearly show that the parameter optimization is very important for
improving the prediction accuracy of SVM models.

4. Conclusions

In this account, SVM method combined with GA for fea-
ture selection and CG method for parameter optimization
(GA–CG–SVM), has been employed to develop classification models
of human plasma protein binding rate and human oral bioavail-
ability. The advantage of the GA–CG–SVM is that it can deal with
feature selection and SVM parameter optimization simultaneously.
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The generated models were validated by using the 5-fold cross-
validation and independent validation set methods. For the PPBR,
the training set contains 692 compounds and the test set includes
external 161 compounds. The prediction accuracy for the train-
ing set by using 5-fold cross-validation is 86%. And the prediction
accuracy for the independent validation set is 81%. The prediction
accuracies obtained here are much higher over that of the best
model currently available in literature. The number of descriptors
selected by GA–CG is 29. For the BIO, the training set is composed
of 690 compounds and the independent validation set contains 76
compounds. The overall prediction accuracies are 80% and 86% for
the training set and the independent validation set, respectively,
which are better than or comparable to those of other classifica-
tion models. The number of descriptors selected is 25. For both the
PPBR and BIO, the descriptors selected by GA–CG method cover a
large range of molecular properties which imply that the PPBR and
BIO of a drug are affected by many complicated factors. Finally the
influence of the use of parameter optimization on the SVM pre-
diction model has also been examined. The prediction accuracies
of the models with parameter optimization involved in the mod-
eling are much higher over those without parameter optimization

involved. These results clearly show that the parameter optimiza-
tion is very important for improving the prediction accuracy of SVM
models.
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